$\pm 15 k V$ ESD Protected, 100Mbps, 5V, PROFIBUS ${ }^{\circledR}$, Full Fail-safe, RS-485/RS-422 Transceivers

Intersil's ISL3259E is a $\pm 15 \mathrm{kV}$ IEC61000 ESD Protected, 5 V powered, single transceiver that meets both the RS-485 and RS-422 standards for balanced communication. It also features the larger output voltage and higher data rate (up to 100 Mbps) required by high speed PROFIBUS applications. The low bus currents $(+220 \mu \mathrm{~A} /-150 \mu \mathrm{~A})$ present a " $1 / 5$ unit load" to the RS-485 bus, thus allowing up to 160 transceivers on the network without violating the RS-485 specification's load limit, and without using repeaters.

This transceiver requires a 5 V supply, and delivers at least a 2.1 V differential output voltage. This translates into better noise immunity (data integrity), longer reach, or the ability to drive up to six 120Ω terminations in "star" or other non-standard bus topologies.

SCSI applications benefit from the ISL3259's low receiver and transmitter part-to-part skews, which make it perfect for high speed parallel applications where large numbers of bits must be simultaneously captured. The low bit-to-bit skew eases the timing constraints on the data latching signal.

Receiver ($R x$) inputs feature a "Full Fail-Safe" design, which ensures a logic high $R x$ output if $R x$ inputs are floating, shorted, or terminated but undriven. Rx outputs feature high drive levels (typically $>30 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V}$) to ease the design of optically isolated interfaces.

Hot Plug circuitry ensures that the Tx and Rx outputs remain in a high impedance state while the power supply stabilizes.

Driver (Tx) outputs are short circuit protected, even for voltages exceeding the power supply voltage. Additionally, on-chip thermal shutdown circuitry disables the Tx outputs to prevent damage if power dissipation becomes excessive.

Features

- IEC61000 ESD Protection on RS-485 I/O Pins . . . $\pm 15 \mathrm{kV}$
- Class 3 HBM ESD Level on all Other Pins >9kV
- Large Differential $\mathrm{V}_{\text {OUT }}$. 2.8 V into 54Ω Better Noise Immunity, or Drive up to 6 Terminations
- Very High Data Rate up to 100Mbps
- 11/13ns (Max) Tx/Rx Propagation Delays; 1.5ns (Max) Skew
- $1 / 5$ Unit Load Allows up to 160 Devices on the Bus
- Full Fail-Safe (Open, Shorted, Terminated/Undriven) Receiver
- High Rx IOL to Drive Opto-Couplers for Isolated Applications
- Hot Plug - Tx and Rx Outputs Remain Three-State During Power-Up
- Low Quiescent Supply Current 4mA
- Low Current Shutdown Mode. $1 \mu \mathrm{~A}$
- -7 V to +12 V Common Mode Input Voltage Range
- Three-State Rx and Tx Outputs
- Operates from a Single +5V Supply
- Current Limiting and Thermal Shutdown for Driver Overload Protection
- Pb-Free (RoHS Compliant)

Applications

- PROFIBUS ${ }^{\circledR}$ DP and FMS Networks
- SCSI "Fast 40" Drivers and Receivers
- Motor Controller/Position Encoder Systems
- Factory Automation
- Field Bus Networks
- Security Networks
- Building Environmental Control Systems
- Industrial/Process Control Networks

Ordering Information

PART NUMBER (Notes 1, 2)	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL3259EIUZ	$3259 Z$	-40 to +85	8 Ld MSOP	M8.118
ISL3259EIRZ	3259	-40 to +85	10 Ld 3x3 DFN	L10.3x3C

NOTES:

1. Add "-T" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Pinouts

Truth Table

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{\mathrm{RE}}$	DE	DI	B / Z	A / Y
X	1	1	0	1
X	1	0	1	0
0	0	X	High-Z	High-Z
1	0	X	High-Z** *	High-Z*

NOTE: *Shutdown Mode

Truth Table

RECEIVING			
INPUTS			OUTPUT
$\overline{\mathrm{RE}}$	DE	$\mathrm{A}-\mathrm{B}$	RO
0	0	$\geq-0.05 \mathrm{~V}$	1
0	0	$\leq-0.2 \mathrm{~V}$	0
0	0	Inputs Open/Shorted	1
1	1	X	High-Z
1	0	X	High-Z*

NOTE: *Shutdown Mode

Pin Descriptions

PIN	FUNCTION
RO	Receiver output: If $A-B \geq-50 \mathrm{mV}$, $R O$ is high; If $A-B \leq-200 \mathrm{mV}$, RO is low; RO = High if A and B are unconnected (floating) or shorted, or connected to a terminated bus that is undriven.
$\overline{\mathrm{RE}}$	Receiver output enable. RO is enabled when $\overline{\mathrm{RE}}$ is low; RO is high impedance when $\overline{\mathrm{RE}}$ is high. If the Rx enable function isn't required, connect $\overline{\mathrm{RE}}$ directly to GND.
DE	Driver output enable. The driver outputs, Y and Z, are enabled by bringing $D E$ high. They are high impedance when $D E$ is low. If the Tx enable function isn't required, connect $D E$ to $V_{C C}$ through a $1 \mathrm{k} \Omega$ or greater resistor.
DI	Driver input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
GND	Ground connection. This is also the potential of the DFN thermal pad.
A/Y	$\pm 15 \mathrm{kV}$ IEC61000 ESD Protected RS-485, RS-422 level, noninverting receiver input and noninverting driver output. Pin is an input (A) if $D E=0$; pin is an output (Y) if $D E=1$.
B / Z	$\pm 15 \mathrm{kV}$ IEC61000 ESD Protected RS-485, RS-422 level, inverting receiver input and inverting driver output. Pin is an input (B) if $D E=0$; pin is an output (Z) if $D E=1$.
V_{CC}	System power supply input (4.75V to 5.25 V).
NC	No Connection.

Typical Operating Circuit

ISL3259E

Absolute Maximum Ratings	
$V_{C C}$ to GND.	7V
Input Voltages	
DI, DE, RE	-0.3V to 7V
Input/Output Voltages	
A/Y, B/Z	-9V to +13V
RO	-0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Short Circuit Duration	
Y, Z.	Continuous
ESD Rating	Specification Table

Thermal Information

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTE:
3. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
4. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, (Note 5).

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	MIN (Note 14)	TYP	MAX (Note 14)	UNITS
DC CHARACTERISTICS								
Driver Differential $\mathrm{V}_{\text {OUT }}$	V_{OD}			Full	-	-	V_{CC}	
		$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (RS-422) (Figure 1A)		Full	2.6	3.4	-	V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$ (RS-485) (Figure 1A)		Full	2.1	2.8	V_{CC}	V
		$\mathrm{R}_{\mathrm{L}}=60 \Omega,-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$ (Figure 1B)		Full	1.9	2.7	-	V
Change in Magnitude of Driver Differential $\mathrm{V}_{\text {OUT }}$ for Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	$\mathrm{R}_{\mathrm{L}}=54 \Omega \text { or } 100 \Omega \text { (Figure } 1 \mathrm{~A} \text {) }$		Full	-	0.01	0.2	V
Driver Common-Mode $\mathrm{V}_{\text {OUT }}$	V_{OC}	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω (Figure 1A)		Full	-	2	3	v
Change in Magnitude of Driver Common-Mode $\mathrm{V}_{\text {OUT }}$ for Complementary Output States	${ }^{\text {V }}$ OC	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω (Figure 1A)		Full	-	0.01	0.2	V
Logic Input High Voltage	V_{IH}	DI, DE, $\overline{\mathrm{RE}}$		Full	2	-	-	V
Logic Input Low Voltage	V_{IL}	DI, DE, $\overline{\mathrm{RE}}$		Full	-	-	0.8	V
Logic Input Current	$\mathrm{I}_{\text {IN1 }}$	$\mathrm{DI}=\mathrm{DE}=\overline{\mathrm{RE}}=0 \mathrm{~V}$ or V_{CC}		Full	-2	-	2	$\mu \mathrm{A}$
Input Current (A/Y, B/Z)	$\mathrm{I}_{\mathrm{IN} 2}$	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } \\ & 5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	Full	-	-	220	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$	Full	-160	-	-	$\mu \mathrm{A}$
Driver Short-Circuit Current, $\mathrm{V}_{\mathrm{O}}=$ High or Low	IOSD1	$\mathrm{DE}=\mathrm{V}_{\mathrm{CC}},-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Y}}$ or $\mathrm{V}_{\mathrm{Z}} \leq 12 \mathrm{~V}$ (Note 7)		Full	-	-	± 250	mA
Differential Capacitance	$C_{\text {D }}$	A/Y to B/Z		25	-	9	-	pF
Receiver Differential Threshold Voltage	V_{TH}	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		Full	-200	-	-50	mV
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		25	-	28	-	mV
Receiver Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=-50 \mathrm{mV}$		Full	$\mathrm{V}_{\text {CC }}-0.5$	-	-	V
Receiver Output Low Voltage	V_{OL}	$\mathrm{I}_{\mathrm{O}}=+10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=-200 \mathrm{mV}$		Full	-	-	0.4	V
Receiver Output Low Current	lot	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		Full	25	40	-	mA
Three-State (High Impedance) Receiver Output Current	Iozr	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V}$		Full	-1	0.015	1	$\mu \mathrm{A}$

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, (Note 5). (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { MIN } \\ \text { (Note 14) } \end{gathered}$	TYP	$\begin{aligned} & \text { MAX } \\ & \text { (Note 14) } \end{aligned}$	UNITS
Receiver Input Resistance	R_{IN}	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$	Full	54	80	-	$\mathrm{k} \Omega$
Receiver Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$	Full	± 20	-	± 110	mA
SUPPLY CURRENT							
No-Load Supply Current (Note 6)	ICC	DI $=$ DE $=0 \mathrm{~V}$ or V_{CC}	Full	-	2.6	4	mA
Shutdown Supply Current	ISHDN	$\mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DI}=0 \mathrm{~V}$ or V_{CC}	Full	-	0.05	1	$\mu \mathrm{A}$

ESD PERFORMANCE

RS-485 Pins (A/Y, B/Z)	IEC61000-4-2, Air-Gap Discharge Method	25	-	± 15	-	kV
	IEC61000-4-2, Contact Discharge Method	25	-	± 8	-	kV
	Human Body Model, From Bus Pins to GND	25	-	± 16.5	-	kV
All Pins	HBM, per MIL-STD-883 Method 3015	25	-	$> \pm 9$	-	kV
	Machine Model	25	-	$> \pm 400$	-	V

DRIVER SWITCHING CHARACTERISTICS

Maximum Data Rate	$f_{\text {MAX }}$	$\mathrm{V}_{\mathrm{OD}} \geq \pm 1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 4)	Full	100	-	-	Mbps
Driver Differential Output Delay	$t_{\text {DD }}$	$\mathrm{R}_{\mathrm{D}}=54 \Omega, \mathrm{C}_{\mathrm{D}}=50 \mathrm{pF}$ (Figure 2)	Full	-	8	12	ns
Driver Differential Output Skew	tskew	$\mathrm{R}_{\mathrm{D}}=54 \Omega, \mathrm{C}_{\mathrm{D}}=50 \mathrm{pF}$ (Figure 2)	Full	-	0.5	1.5	ns
Prop Delay Part-to-Part Skew	${ }_{\text {t SKP-P }}$	$\mathrm{R}_{\mathrm{D}}=54 \Omega, \mathrm{C}_{\mathrm{D}}=50 \mathrm{pF}$ (Figure 2), (Note 13)	Full	-	-	4	ns
Driver Differential Rise or Fall Time	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	$\mathrm{R}_{\mathrm{D}}=54 \Omega, \mathrm{C}_{\mathrm{D}}=50 \mathrm{pF}$ (Figure 2)	Full	2	5	8	ns
Driver Enable to Output High	t_{zH}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \text { (Figure 3), } \\ & \text { (Note 8) } \end{aligned}$	Full	-	13	20	ns
Driver Enable to Output Low	t_{ZL}	$R_{L}=110 \Omega, C_{L}=50 p F, S W=V_{C C}$ (Figure 3), (Note 8)	Full	-	11	20	ns
Driver Enable Time Skew	tenskew	$\mid \mathrm{t}_{\mathrm{ZH}}(\mathrm{Y}$ or Z$)-\mathrm{t}_{\mathrm{ZL}}(\mathrm{Z}$ or Y$) \mid$	Full	-	2.5	-	ns
Driver Disable from Output High	$t_{H Z}$	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 3)	Full	-	14	20	ns
Driver Disable from Output Low	tLZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 3)	Full	-	12	20	ns
Driver Disable Time Skew	t DISSKEW	$\mid \mathrm{t}_{\mathrm{HZ}}(\mathrm{Y}$ or Z$)-\mathrm{t}_{\mathrm{LZ}}(\mathrm{Z}$ or Y$) \mid$	Full	-	3	-	ns
Time to Shutdown	$\mathrm{t}_{\text {SHDN }}$	(Note 10)	Full	60	-	600	ns
Driver Enable from Shutdown to Output High	$\mathrm{t}_{\mathrm{ZH} \text { (SHDN) }}$	$R_{L}=110 \Omega, C_{L}=50 p F, S W=G N D$ (Figure 3), (Notes 10, 11)	Full	-	-	1000	ns
Driver Enable from Shutdown to Output Low	tzL(SHDN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \text { (Figure 3), } \\ & (\text { Notes } 10,11) \end{aligned}$	Full	-	-	1000	ns

RECEIVER SWITCHING CHARACTERISTICS

Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{ID}}= \pm 1.5 \mathrm{~V}$	Full	100	-	-	Mbps	
Receiver Input to Output Delay	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	(Figure 5)	Full	-	9	13	ns	
Receiver Skew \\| tpLH - tphl	${ }_{\text {tSKD }}$	(Figure 5)	Full	-	0	1.5	ns	
Prop Delay Part-to-Part Skew	tSKP-P	(Figure 5), (Note 13)	Full	-	-	4	ns	
Receiver Enable to Output High	t_{zH}	$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \text { (Figure 6), }$ (Note 9)	Full	-	-	12	ns	
Receiver Enable to Output Low	t_{ZL}	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \text { (Figure 6), }$ (Note 9)	Full	-	-	12	ns	
Receiver Disable from Output High	t_{HZ}	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$ (Figure 6)	Full	-	-	12	ns	

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, (Note 5). (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	MIN (Note 14)	TYP	MAX (Note 14)	UNITS
Receiver Disable from Output Low	$t_{L Z}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 6)	Full	-	-	12	ns
Time to Shutdown	${ }^{\text {t }}$ SHDN	(Note 10)	Full	60	-	600	ns
Receiver Enable from Shutdown to Output High	$\mathrm{t}_{\mathrm{ZH}}(\mathrm{SHDN})$	$R_{L}=1 k \Omega, C_{L}=15 p F, S W=G N D$ (Figure 6), (Notes 10, 12)	Full	-	-	1000	ns
Receiver Enable from Shutdown to Output Low	$\mathrm{t}_{\mathrm{ZL}}(\mathrm{SHDN})$	$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$ (Figure 6), (Notes 10, 12)	Full	-	-	1000	ns

NOTES:
5. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
6. Supply current specification is valid for loaded drivers when $D E=0 V$.
7. Applies to peak current. See "Typical Performance Curves" starting on page 11 for more information.
8. Because of the shutdown feature, keep $\overline{\mathrm{RE}}=0$ to prevent the device from entering SHDN.
9. Because of the shutdown feature, the $\overline{\mathrm{RE}}$ signal high time must be short enough (typically <100ns) to prevent the device from entering SHDN.
10. These IC's are put into shutdown by bringing $\overline{R E}$ high and DE low. If the inputs are in this state for less than 60ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 700ns, the parts are guaranteed to have entered shutdown. See "Low Power Shutdown Mode" on page 11.
11. Keep $\overline{\mathrm{RE}}=\mathrm{VCC}$, and set the DE signal low time >700 ns to ensure that the device enters SHDN.
12. Set the $\overline{\mathrm{RE}}$ signal high time >700 ns to ensure that the device enters SHDN.
13. This is the part-to-part skew between any two units tested with identical test conditions (Temperature, V_{CC}, etc.).
14. Parts are 100% tested at $+25^{\circ} \mathrm{C}$. Over-temperature limits established by characterization and are not production tested.

Test Circuits and Waveforms

FIGURE 1A. V ${ }_{\text {OD }}$ AND $V_{O C}$

FIGURE 1B. VOD WITH COMMON MODE LOAD

FIGURE 1. DC DRIVER TEST CIRCUITS

Test Circuits and Waveforms (Continued)

FIGURE 2A. TEST CIRCUIT

FIGURE 2B. MEASUREMENT POINTS

FIGURE 2. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES

FIGURE 3A. TEST CIRCUIT

FIGURE 3B. MEASUREMENT POINTS

FIGURE 3. DRIVER ENABLE AND DISABLE TIMES

FIGURE 4A. TEST CIRCUIT
FIGURE 4B. MEASUREMENT POINTS
FIGURE 4. DRIVER DATA RATE

Test Circuits and Waveforms (Continued)

FIGURE 5. RECEIVER PROPAGATION DELAY

FIGURE 6A. TEST CIRCUIT

FIGURE 6B. MEASUREMENT POINTS

FIGURE 6. RECEIVER ENABLE AND DISABLE TIMES

Application Information

RS-485 and RS-422 are differential (balanced) data transmission standards for use in long haul or noisy environments. RS-422 is a subset of RS-485, so RS-485 transceivers are also RS-422 compliant. RS-422 is a point-to-multipoint (multidrop) standard, which allows only one driver and up to 10 (assuming one unit load devices) receivers on each bus. RS-485 is a true multipoint standard, which allows up to 32 one unit load devices (any mix of drivers and receivers) on each bus. To allow for multipoint operation, the RS-485 spec requires that drivers must handle bus contention without sustaining any damage.

Another important advantage of RS-485 is the extended common mode range (CMR), which specifies that the driver outputs and receiver inputs withstand signals that range from +12 V to -7 V . RS-422 and RS-485 are intended for runs as long as $4000{ }^{\prime}(\sim 1200 \mathrm{~m})$, so the wide CMR is necessary to handle ground potential differences, as well as voltages induced in the cable by external fields.

Receiver ($R x$) Features

This transceiver utilizes a differential input receiver for maximum noise immunity and common mode rejection. Input sensitivity is $\pm 200 \mathrm{mV}$, as required by the RS-422 and RS-485 specifications. Receiver inputs function with common mode voltages as great as 7 V outside the power supplies (i.e., +12 V and -7 V), making them ideal for long networks, or industrial environments, where induced voltages are a realistic concern.

The receiver input resistance of $50 \mathrm{k} \Omega$ surpasses the RS-422 spec of $4 \mathrm{k} \Omega$, and is 5 x the RS-485 "Unit Load" (UL) requirement of $12 \mathrm{k} \Omega$ minimum. Thus, the ISL3259E is known as a "one-fifth UL" transceiver, and there can be up to 160 devices on the RS-485 bus while still complying with the RS-485 loading specification.

The receiver is a "full fail-safe" version that guarantees a high level receiver output if the receiver inputs are unconnected (floating), shorted together, or connected to a terminated bus with all the transmitters disabled (terminated/undriven).
$R x$ outputs deliver large low state currents (typically $>30 \mathrm{~mA}$) at $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$, to ease the design of optically coupled isolated networks.

Receivers easily meet the 100Mbps data rate supported by the driver, and the receiver output is tri-statable via the active low $\overline{\mathrm{RE}}$ input.

Driver (Tx) Features

The RS-485/RS-422 driver is a differential output device that delivers at least 2.1 V across a 54Ω load (RS-485/
PROFIBUS), and at least 2.6 V across a 100Ω load (RS-422) even with $V_{C C}=4.75 \mathrm{~V}$. The drivers feature low propagation delay skew to maximize bit width, and to minimize EMI.

Outputs of the drivers are not slew rate limited, so faster output transition times allow data rates up to100Mbps. Driver outputs are tri-statable via the active high DE input.

For parallel applications, bit-to-bit skews between any two ISL3259E transmitter and receiver pairs are guaranteed to be no worse than 8ns (4ns max for any two Tx, 4ns max for any two Rx).

High V ${ }_{\text {OD }}$ Improves Noise Immunity and Flexibility

The ISL3259E driver design delivers larger differential output voltages (V_{OD}) than the RS-485 standard requires, or than most RS-485 transmitters can deliver. The minimum $\pm 2.1 \mathrm{~V}$ $\mathrm{V}_{\text {OD }}$ guarantees at least $\pm 600 \mathrm{mV}$ more noise immunity than networks built using standard $1.5 \mathrm{~V} \mathrm{~V}_{\mathrm{OD}}$ transmitters.
Another advantage of the large V_{OD} is the ability to drive more than two bus terminations, which allows for utilizing the ISL3259E in "star" and other multi-terminated, "non-standard" network topologies. Figure 8, details the transmitter's V_{OD} vs IOUT characteristic, and includes load lines for four (30Ω) and six (20ת) 120Ω terminations. The figure shows that the driver typically delivers $1.9 / 1.5 \mathrm{~V}$ into $4 / 6$ terminations, even at $+85^{\circ} \mathrm{C}$. The RS-485 standard requires a minimum $1.5 \mathrm{~V} \mathrm{~V}_{\mathrm{OD}}$ into two terminations, but the ISL3259E typically delivers RS-485 voltage levels with $2 x$ to $3 x$ the number of terminations.

ESD Protection

All pins on the ISL3259E include class 3 ($>9 \mathrm{kV}$) Human Body Model (HBM) ESD protection structures, but the RS-485 pins (driver outputs and receiver inputs) incorporate advanced structures allowing them to survive ESD events in excess of $\pm 16.5 \mathrm{kV}$ HBM and $\pm 15 \mathrm{kV}$ IEC61000-4-2. The RS-485 pins are particularly vulnerable to ESD strikes because they typically connect to an exposed port on the exterior of the finished product. Simply touching the port pins, or connecting a cable, can cause an ESD event that might destroy unprotected ICs. These new ESD structures protect the device whether or not it is powered up, and without degrading the RS-485 common mode range of -7 V to +12 V . This built-in ESD protection eliminates the need for board level protection structures (e.g., transient suppression diodes), and the associated, undesirable capacitive load they present.

IEC61000-4-2 Testing

The IEC61000 test method applies to finished equipment, rather than to an individual IC. Therefore, the pins most likely to suffer an ESD event are those that are exposed to the outside world (the RS-485 pins in this case), and the IC is tested in its typical application configuration (power applied) rather than testing each pin-to-pin combination. The IEC61000 standard's lower current limiting resistor coupled with the larger charge storage capacitor yields a test that is much more severe than the HBM test. The extra ESD protection built into this device's RS-485 pins allows the design of equipment meeting level 4 criteria without the need for additional board level protection on the RS-485 port.

AIR-GAP DISCHARGE TEST METHOD

For this test method, a charged probe tip moves toward the IC pin until the voltage arcs to it. The current waveform delivered to the IC pin depends on approach speed, humidity, temperature, etc., so it is more difficult to obtain repeatable results. The ISL3259E RS-485 pins withstand $\pm 15 \mathrm{kV}$ air-gap discharges.

CONTACT DISCHARGE TEST METHOD

During the contact discharge test, the probe contacts the tested pin before the probe tip is energized, thereby eliminating the variables associated with the air-gap discharge. The result is a more repeatable and predictable test, but equipment limits prevent testing devices at voltages higher than $\pm 9 \mathrm{kV}$. The RS-485 pins of the ISL3259E survive $\pm 8 \mathrm{kV}$ contact discharges.

Hot Plug Function

When a piece of equipment powers up, there is a period of time where the processor or ASIC driving the RS-485 control lines ($D E, \overline{R E}$) is unable to ensure that the RS-485 Tx and $R x$ outputs are kept disabled. If the equipment is connected to the bus, a driver activating prematurely during power-up may crash the bus. To avoid this scenario, the ISL3259E incorporates a "Hot Plug" function. Circuitry monitoring V_{CC} ensures that, during power-up and power-down, the Tx and Rx outputs remain disabled, regardless of the state of $D E$ and $\overline{R E}$, if V_{CC} is less than $\sim 3.2 \mathrm{~V}$. This gives the processor/ASIC a chance to stabilize and drive the RS-485 control lines to the proper states.

FIGURE 7. HOT PLUG PERFORMANCE (ISL3259E) vs ISL83088E WITHOUT HOT PLUG CIRCUITRY

Data Rate, Cables, and Terminations

Twisted pair is the cable of choice for RS-485, RS-422, and PROFIBUS networks. Twisted pair cables tend to pick up noise and other electromagnetically induced voltages as common mode signals, which are effectively rejected by the differential receivers in these ICs.

According to guidelines in the RS-422 and PROFIBUS specifications, networks operating at data rates in excess of 3Mbps should be limited to cable lengths of 100 m (328 ft) or less, and the PROFIBUS specification recommends that the more expensive "Type A" (22AWG) cable be used. The ISL3259E's large differential output swing, fast transition times, and high drive-current output stages allow operation even at 100Mbps over standard "CAT-5" cables up to 31m (100 ft). Figures 16 and 17 detail the ISL3259E performance at this condition, with a 120Ω termination resistor at both the driver and the receiver ends. Note that the differential signal delivered to the receiver at the end of the cable ($\mathrm{A}-\mathrm{B}$) still exceeds 1 V , so even longer cables could be driven if lower noise margins are acceptable. Of course, jitter or some other criteria may limit the network to shorter cable lengths than those discussed here. If more noise margin is desired, shorter cables may produce a larger receiver input signal. Performance should be even better if the "Type A" cable is utilized.

The ISL3259E may also be used at slower data rates over longer cables, but there are some limitations. The Rx is optimized for high speed operation, so its output may glitch if the Rx input differential transition times are too slow. Keeping the transition times below 500 ns, (which equates to the Tx driving a 1000' (305m) CAT-5 cable) yields excellent performance over the full operating temperature range.

To minimize reflections, proper termination is imperative when using this high data rate transceiver. In point-to-point, or point-to-multipoint (single driver on bus) networks, the main cable should be terminated in its characteristic impedance (typically 120Ω for "CAT-5", and 220Ω for "Type A") at the end farthest from the driver. In multi-receiver applications, stubs connecting receivers to the main cable should be kept as short as possible. Multipoint (multi-driver) systems require that the main cable be terminated in its characteristic impedance at both ends. Stubs connecting a transceiver to the main cable should be kept as short as possible.

Built-In Driver Overload Protection

As stated previously, the RS-485 specification requires that drivers survive worst case bus contentions undamaged. These transmitters meet this requirement via driver output short circuit current limits, and on-chip thermal shutdown circuitry.
The driver output stages incorporate short circuit current limiting circuitry, which ensures that the output current never exceeds the RS-485 specification, even at the common mode voltage range extremes. In the event of a major short circuit condition, the device also includes a thermal shutdown feature that disables the drivers whenever the die temperature becomes excessive. This eliminates the power dissipation, allowing the die to cool. The drivers automatically reenable after the die temperature drops about $+15^{\circ}$. If the contention persists, the thermal shutdown/re-enable cycle repeats until the fault is cleared. Receivers stay operational during thermal shutdown.

Low Power Shutdown Mode

This BiCMOS transceiver uses a fraction of the power required by their bipolar counterparts, but it also includes a shutdown feature that reduces the already low quiescent ICC to a 50nA trickle. It enters shutdown whenever the receiver and driver are simultaneously disabled $\left(\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}\right.$ and DE $=$ GND) for a period of at least 600ns. Disabling both the
driver and the receiver for less than 60ns guarantees that the transceiver will not enter shutdown.

Note that receiver and driver enable times increase when the transceiver enables from shutdown. Refer to Notes 8, 9, 10, 11 and 12, at the end of the "Electrical Specifications" table on page 6, for more information.

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Unless Otherwise Specified

FIGURE 8. DRIVER OUTPUT CURRENT vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 10. DRIVER OUTPUT CURRENT vs SHORT CIRCUIT VOLTAGE

FIGURE 9. DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 11. SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Unless Otherwise Specified (Continued)

FIGURE 12. DRIVER DIFFERENTIAL PROPAGATION DELAY vs TEMPERATURE

FIGURE 14. DRIVER AND RECEIVER WAVEFORMS

FIGURE 16. WORST CASE (NEGATIVE) SINGLE PULSE DRIVER AND RECEIVER WAVEFORMS DRIVING 100 FEET (31 METERS) OF CAT5 CABLE (DOUBLE TERMINATED WITH 120 2)

FIGURE 13. DRIVER DIFFERENTIAL SKEW vs TEMPERATURE

FIGURE 15. DRIVER AND RECEIVER WAVEFORMS

FIGURE 17. DRIVER AND RECEIVER SEVEN PULSE WAVEFORMS DRIVING 100 FEET (31 METERS) OF CAT5 CABLE (DOUBLE TERMINATED WITH 120 Ω)

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Unless Otherwise Specified (Continued)

FIGURE 18. RECEIVER OUTPUT CURRENT vs RECEIVER OUTPUT VOLTAGE

Die Characteristics

SUBSTRATE AND DFN THERMAL PAD POTENTIAL (POWERED UP):

GND

TRANSISTOR COUNT:
768
PROCESS:
Si Gate BiCMOS

Mini Small Outline Plastic Packages (MSOP)

NOTES:

1. These package dimensions are within allowable dimensions of JEDEC MO-187BA.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. Dimension " D " does not include mold flash, protrusions or gate burrs and are measured at Datum Plane. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E1" does not include interlead flash or protrusions and are measured at Datum Plane. $-\mathrm{H}-$ Interlead flash and protrusions shall not exceed 0.15 mm (0.006 inch) per side.
5. Formed leads shall be planar with respect to one another within $0.10 \mathrm{~mm}(0.004)$ at seating Plane.
6. "L" is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm (0.0027 inch).
10. Datums $-\mathrm{A}-$ and $-\mathrm{B}-$ to be determined at Datum plane $-\mathrm{H}-$.
11. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only.

M8.118 (JEDEC MO-187AA)
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.037	0.043	0.94	1.10	-
A1	0.002	0.006	0.05	0.15	-
A2	0.030	0.037	0.75	0.95	-
b	0.010	0.014	0.25	0.36	9
c	0.004	0.008	0.09	0.20	-
D	0.116	0.120	2.95	3.05	3
E1	0.116	0.120	2.95	3.05	4
e	0.026 BSC		0.65 BSC		-
E	0.187	0.199	4.75	5.05	-
L	0.016	0.028	0.40	0.70	6
L1	0.037 REF		0.95 REF		-
N	8		8		7
R	0.003	-	0.07	-	-
R1	0.003	-	0.07	-	-
0	5^{0}	15°	5^{0}	15°	-
α	0^{0}	6^{0}	0^{0}	6^{0}	-

Dual Flat No-Lead Plastic Package (DFN)

L10.3x3C
10 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE

SYMBOL	MILLIMETERS			MIN
	NOMINAL	MAX	NOTES	
A	0.85	0.90	0.95	-
A1	-	-	0.05	-
A3	0.20 REF			-
b	0.20	0.25	0.30	5,8
D	3.00 BSC			-
D2	2.33	2.38	2.43	7,8
E	3.00 BSC			-
E2	1.59	1.64	1.69	7,8
e	0.50 BSC			-
k	0.20	-	-	-
L	0.35	0.40	0.45	8
N	10			
Nd	10			

Rev. 1 4/06
NOTES:

1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd refers to the number of terminals on D.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.
7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
9. COMPLIANT TO JEDEC MO-229-WEED-3 except for dimensions E2 \& D2.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

